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Abstract. The relativistic quantum statistical properties of a charged many-fermion system
with single fermion rest massm0 confined in a mesoscopic ring are investigated. The small ring
is threaded by an Aharonov–Bohm magnetic fluxφ. We have performed analytical calculations
starting from evaluating the logarithm of the grand partition functions by using the Mellin
transform. The persistent currents, number densities, total energies, heat capacity and hence
the fluctuations of the total energies are obtained both in the weakly degenerate and degenerate
situations for finite temperature. These thermodynamic functions oscillate periodically inφ

with period φ0 = h/q, and they are related to the modified Bessel functions of the second
kind Kν(r). For the weakly degenerate case, where the chemical potentialµ 6 m0, we find
they decay exponentially with respect to the decrease in temperature, and their magnitudes also
decrease in the form of modified exponential functions as the circumferenceL increases. In the
degenerate case, whereµ > m0, these functions behave complicatedly in the form of generalized
hypergeometric functions, which decay in the power series forms at very low temperature. The
non-relativistic limits are given by considering the asymptotic behaviours ofKν(r).

1. Introduction

Between the measures of macroscopic and microscopic systems there exist so-called
mesoscopic systems [1], whose measures lie from millimicron to micron, and in which
about 1011 microparticles are contained. The physical quantities of mesoscopic systems
are also the statistical averages of a large number of microscopic particles. In contrast
to macroscopic physics, the dimensions being smaller than the phase coherent lengths,
the microparticles keep their phase memories due to the fact that only elastic scattering
procedure takes place between them [2]. The superpositions of particle wavefunctions
with coherent phase exhibit non-local properties and strong fluctuations. Therefore, a great
number of curious phenomena and profound physical connotations are contained in the
mesoscopic frontier. Large ensemble theories should be amended and supplemented in the
small structures. Because the surface effect of mesoscopic systems cannot be neglected,
physical properties rely on the forms of objects, and hence we will also encounter many
difficulties during our investigation.

In 1957, Landauer proposed that the resistance of a one-dimensional mesoscopic system
can be calculated by barrier penetrating model, and he obtained a formula expressed in
terms of the transmission coefficient [3]. During the transport in the disordered medium,
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the electrons undergo elastic scattering of impurity atoms, holes and crystal boundaries, etc.
Landauer–B̈uttiker transport theory studies the overall transport characteristic of a simplified
system connected to different terminals [4]. The two-dimensional system having no external
interaction is conncected to terminal poles with chemical potentialsµi (i = 1, . . . , N)
by complete wires. The electrons emitted from the reservoirs lose their phase memories
completely when entering the terminal poles because they experience inelastic scattering.
Büttiker’s formula very straightforwardly associates the conductance measured from the
terminals with electron scattering matrix of the system. The theory successfully explains
the conductance fluctuation [5], ballistic curve transport [6], classical and quantum Hall
effect [7], etc, of mesoscopic quantum interferential transport.

The first experiment to show the superposition of coherent electron waves affecting
transport properties was performed by Sharvinet al [8] in 1981 by investigating the magnetic
resistance of a cylindrical film of magnesium. Then Altshuleret al performed an experiment
to examine a cylindrical film of lithium. All these showed that the magnetic resistance
oscillates with a period80/2, where80 = h/e; the magnetic resistance of mesoscopic
system is smaller than classical one; in the absence of external magnetic field the magnetic
resistance reaches its maximum value [9]. The observation performed by Webbet al on
the normal gold ring with millimicron size exhibits the Aharonov–Bohm effect explicitly
[10]. Stone simulated the structure of magnetic resistance oscillation numerically by using a
computer, and he predicted that the second quantum contribution to the magnetic resistance
of a gold ring is the oscillation of magnetic resistance with period80 superposed on the
background of random fluctuating resistance [11]. Altshuleret al studied the weakly local
conductance by calculating the correlation function, and they obtained the conductance
correction of conjugate electron waves [12]. Altshuleret al investigated the mesoscopic
conductanceG and density fluctuations of Anderson model by a field-theoretical approach.
They pointed out that at not too large deviations from the mean value, the fluctuations are
described within the framework of one-parameter scaling. In the metallic region (G � e2/h)
the one-parameter scaling leads to fluctuations that deviate greatly from a Gaussian [13].
Tanget al discovered that the conductances of mesoscopic systems are sensitive functions of
DC voltage by using scattering theory [14]. Leeet al employed the technique of correlation
function to calculate the mean square fluctuation, and they found thatG ∝ e/80 [15]. For
any sample, so long as its dimension is smaller than the phase coherence correlation length,
the variation with magnetic field of the conductance fluctuation is universal. The fluctuation
amplitude is aboute/80, depends weakly on the form of the samples and does not relate
to the mean resistance. The pictures of magnetic resistance fluctuations are different, even
though they are measured under the same conditions. This is due to the fact that the number
of scattering centres and distributions are different in the same sample.

Cheunget al performed analytical calculations and computer simulations to study the
persistent current in a small isolated one-dimensional normal metal rings with circumference
L enclosing a magnetic flux. Scattered by a random potential, the electric current vibrates
with period 80, and it decreases exponentially with temperatureT . Under a certain
averaging procedure, the vibrating period changes to80/2 [16]. Ambegaokaret al
calculated the equilibrium current in a mesoscopic normal metal ring to first order in
the screened electron–electron interaction. They discovered that the average current in
an ensemble of such a ring is periodic in the flux with period80/2, and at zero temperature
it is to order of magnitudeI ∼ evF `/L

2, where` is the mean free path. The effect of current
decreasing exponentially with temperature is determined on a scale of the coherent energy
hD/L2, whereD is the electronic diffusion constant [17]. Efectov calculated a dynamic
current in a mesoscopic ring subjected to a time-dependent external magnetic field by using
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linear-response theory and the supersymmetric method. He showed that the current remains
finite in the limit of the frequency approaching zero, and that the excess currents can be
obtained from thermodynamic considerations [18]. Nathansonet al studied the effect of a
magnetic flux threading a perfect mesoscopic one-dimensional ring upon Peierls instability.
Within the mean-field approximation, the Peierls transition temperature oscilliates with the
flux. Fluctuations due to the finiteness of the ring destroy this effect as they smear the
phase transition. When the effect of the Peierls instability upon the oscillatory behaviour
of thermodynamic quantities of the ring with the flux is considered, it is found that the
amplitude of oscillation is suppressed significantly even for a very small ring [19].

D’Amato and Pastawki proposed a model in which they employed perfect lateral leads
to couple a one-dimensional chain. The coupling introduces damping of the wavefunction
by adding an imaginary part to the self-energy [20]. Dattaet al presented a form of
Hamiltonian assuming that inelastic scattering is caused by a distribution of independent
oscillators. Each oscillator interacts with the electrons through aδ-potential in space. They
also obtained a steady-state quantum transport equation from the Dyson equation [21].
Chen and Sorbello investigated a one-dimensional mesoscopic system coupled with electron
reservoirs. They considered both the elastic and inelastic scattering to obtain a formula for
the conductance. They started from the ensemble density matrices of electrons and impurity
to find explicit expressions for the effective temperature of the non-equilibrium electrons
and for the relaxation rate of the impurity towards the thermally exited steady state. In the
case of high bias and high lattice temperature, the impurity follows a Boltzmann distribution
with a time-dependent temperature [22].

There is much interest in the study of transport in mesoscopic systems with strong
electron–electron correlation [23–25]. It is believed that these systems constitute a new
area of research where novel phenomena associated with quantum coherence in the presence
of electron–electron interaction can be probed. Ng investigated the problem of nonlinear
resonant tunneling through an Anderson impurity. He found that to order 1/N , the Kondo
resonance is not destroyed by any finite potential difference between external poles [26].
Heinonen and Johnson presented an approach to the study of steady-state mesoscopic
transport based on the maximum entropy principle formulation of non-equilibrium statistical
mechanics [27]. This approach is not limited to the linear response regime, and it yields
the quantization observed in the integer quantum Hall effect at large currents. Resistance
fluctuations in multiple-lead geometries, random-matrix theory of mesoscopic fluctuations,
the current–current correlation functions, dynamics and thermodynamics of metallic rings
are discussed in detail [28–31].

Small metallic rings provide excellent objects for studying mesoscopic physics both
theoretically and experimentally. Persistent currents are the generally attentive problems
which occur not only in isolated rings but also in rings connected via leads to electron
reservoirs [32–34]. The persistent currents referring to the magnetic flux threading through
the rings provide an important clue to understanding mesoscopic physics. Statistical
mechanics is a natural approach for research into the problems of thermodynamics for
a mesoscopic sample from which one can extrapolate complex behaviour of the system
by thermodynamic functions. The main previous investigations on mesoscopic systems
are based on non-relativistic point of view. However, it is necessary to investigate the
small sample by relativistic statistical mechanics. The dynamical problem of interacting
particles is rather difficult, however. If interactions can be ignored, the effects of relativistic
kinematics on the mesoscopic properties of a many-body system can be studied in terms of
free-particle models.

The purpose of this paper is to examine a mesoscopic ring threading an Aharonov–Bohm
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magnetic flux, in whichN charged ideal fermions are contained. In section 2, we present
some useful formulae of thermodynamics for calculating macroscopic observables. From
the Mellin transform we give the general formulation of the logarithm of the grand partition
function of this free-fermion system. Sections 3 and 4 are devoted to explicit calculations
in the cases of weak degeneration and degeneration, respectively. The persistent currents,
total energies, number densities, and the ensemble fluctuation of the energy are obtained in
these sections. Section 5 contains a brief discussion.

2. Relativistic ensemble formulation

Consider a system ofN charged fermions with rest massm0, chargeq, and spins for each
fermion confined in a circular ring with circumferenceL. Each fermion is dominated by
the Dirac equation. Because particle–particle interactions are strictly excluded, no negative
energy states are excited, and the question of pair-production never arises. These fermions
submit to Fermi–Dirac statistics, and hence to Pauli’s exclusion principle. If all negative
energy levels are filled, and all the positive energy levels are empty, this state is called a
vacuum state. Thus, the physical vacuum which has the lowest energy is obtained by filling
the Dirac sea. The value of the vacuum state energy cannot be observed. We assume that
the magnetic fluxφ threads the ring axially, but there is no magnetic field on the ring.
Therefore the fermions always move in a field-free space. In the one-channel case the
spatial degree of freedom of single particle is the azimuthal angleθ , the vector potentialA
may be chosen to have the formA = 2πθ̂φ/L2, whereθ̂ is the unit vector in the direction
of azimuthal angleθ [16]. Instead of usingθ as the spatial degree of freedom of a single
particle, we employ the spatial variablex = Lθ/2π . The Dirac equation of single fermion
in the vector potentialA is

[γµ(∂µ − i(q/h̄)Aµ(x))+m0/h̄]ψ(x) = 0 (1)

whereγµ are Dirac matrices,Aµ = (A, iϕ), (µ = 1, 2, 3, 4), and we have set the velocity
of light C to be unit, i.e.C = 1. Hereϕ is the scalar potential. As a non-relativistic
Schr̈odinger equation, the Dirac equation (1) is gauge invariant by making the second kind
of gauge transformation for potentialAµ(x)

Aµ(x) → A′
µ(x) = Aµ(x)+ ∂µ3(x) (2)

and by the phase factor transformation for the wavefunctionψ(x)

ψ(x) → ψ ′(x) = exp[iq3(x)/h̄]ψ(x) . (3)

For our system, it can be disposed by considering the situation where the fermions
move independently of the magnetic field, but are affected by the vector potential. The
Hamiltonian transfers to the free particle form; however, the wavefunction is weighted by
a phase factor. As discussed in [35], we deal with the circumstance where the field does
not appear explicitly in the Hamiltonian, but the boundary conditions are modified:

ψ(L) = exp

(
i
2πφ

φ0

)
ψ(0)

dψ(L)

dx
= exp

(
i
2πφ

φ0

)
dψ(0)

dx
(4)

whereφ0 = h/q, andh is Planck’s constant, so that each fermion in this system has the
discrete energy spectrum

E(kn) = (h̄2k2
n +m2

0)
1/2 (5)
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wherekn is the dimensionless magnitude of the quantized propagation vector

kn = 2π

L

(
n+ φ

φ0

)
n = 0,±1,±2, . . . . (6)

Quantum mechanics gives a correct description of the microscopic behaviour of the
constituent particles of theN -fermion system, and the quantum numbers describing the
possible states take on discrete values in the closed mesoscopic ring. Each member of
the discrete set of energyEn is an implicit function of numerous parameters, such as the
circumferenceL, magnetic fluxφ, and chemical potential. To find the average values of the
finite system observables, we should investigate the quantum relativistic grand canonical
ensemble.

A completely general expression for the grand canonical partition function describing
anN -particle system in thermal equilibrium is defined by

ZG(β, φ) = Tr exp[−β(Ĥ − µN̂)] (7)

where Ĥ is the Hamiltonian of the system, iŝN = ∑
i n̂i the total number operator,

and n̂i is the operator such that its expectation value at any instant gives the number of
fermions in statei. In equation (7),β is the inverse of the temperatureT , i.e.β = 1/KBT ,
µ the chemical potential of fermion, withKB Boltzmann’s constant. Evaluation of the
traces in (7) is a rather formidable task in general, major complications arising from the
interactions among particles in the system as well as from all the effects of any external
fields. In future work we will study the mesoscopic systems for incorporating these particle
interactions explicitly in the calculations, but the present paper is concerned primarily with
situations of neglecting the interactions. In this grand cononical emsemble the independent
thermodynamical parameters are chosen to beL, T andµ.

Due to the fact that the system is subject to Pauli’s principle, the independent global
states of the fermions are specified by explicitly invoking this principle in the form of a
constraint limiting the values of the occupation numbers toni = 0, 1. The grand partition
function of the model is then formulated as the product of the discrete functions for each
single-particle state [36]:

ZG(β, φ) =
∞∏

i=−∞
[1 + exp(−βE(ki)− α)] α = −βµ . (8)

The magnitude of the chemical potentialµ in general takes values in the range−∞ < µ <

∞. The free energyF(β, φ) can immediately be determined according to

F(β, φ) = −KBT lnZG(β, φ) . (9)

The relevant thermodynamic functions can be derived from equation (8) by direct
differentiation. The number density of the system can be found from

n = 1

βL

∂

∂µ
lnZG(β, φ) (10)

and the total energy is then

E(β, φ) = µN − ∂

∂β
lnZG(β, φ) (11)

whereN = nL is the total number of fermions.
Of considerable interest to the experimentalist is the persistent current which is a

measurable quantity that describes the response of the system to external magnetic flux
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stimuli. At finite temperatures, one can calculate the current from the free energy shown
in (9) originated by Yang and Byers [35]:

I = −∂F
∂φ
. (12)

If the system obeys Maxwell’s relations, the heat capacity is defined by the partial
derivative of energy with respect to temperature at constant lengthL:

CL =
(
∂E

∂T

)
L

. (13)

The measuring pressure can be expressed explicitly as

p = 1

βL
lnZG(β, φ) . (14)

Since the partition function (8) is uniquely determined by the energy levels which vary
periodically with periodφ0, the partition function, free energy and other thermodynamic
functions of the system are obviously periodic functions ofφ with periodφ0. Hence, all
the measured mesoscopic quantities are periodic functions ofφ. Furthermore, the system
under consideration is invariant under time reversal, and the free energy remains unchanged
if the system rotates around the origin; thereby,φ changes its sign. Thus,F(β, φ) must be
an even function ofφ, and the current derived from (12) must be an odd function ofφ.

Now we employ a very powerful and useful recipe developed in terms of the inverse
Mellin transform by Grandyet al [37] to evaluate lnZG in arbitrary temperature and
chemical potential. Under appropriate conditions on the functiong(t), the inverse Mellin
transform reads

g̃(x) = 1

2π i

∫ a+i∞

a−i∞
g(t)x−t dt . (15)

From standard sources one can look up the transform pair

ln |1 + x| πt−1 csc(πt) − 1< Ret < 0.

The integral and sum can be interchanged assuming both of them are convergent uniformly,
hence the logarithm of grand partition function (8) for free relativistic fermions yields

lnZG(β, φ) = 1

2i

∫ a+i∞

a−i∞

1

t sin(πt)
exp(βµt)ZB(tβ, φ) dt 0< a < 1 (16)

whereZB(tβ, φ) is the single-particle canonical partition function in Boltzmann statistics

ZB(tβ, φ) =
∑
i

exp(−tβEi(φ)) (17)

with the summation running over all single-particle states.
Utilizing the basic Possion summation formula for a given functionf (x):

∞∑
n=−∞

f (n) =
∞∑

`=−∞

∫ ∞

−∞
f (x) exp(i2π`x) dx (18)

we find that equation (17) in this system explicitly is as follows:

ZB(tβ, φ) = ξη

π

[
K1(zt)+

∞∑
`=1

∞∑
ν=0

Pν`(tz)Kν+1(zt) cos

(
2π`

φ

φ0

)]
(19)
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where

Pν`(tz) = 2(−1)ν
1

ν!

[
(ξ`)2

2zt

]ν
ξ = Lm0/h̄ z = βm0 η = 2s + 1 .

HereKν(r) are the modified Bessel functions of the second kind [38]. In equation (19),
because the subscript of the Bessel functions is positive integer,Kν+1(r) are expressed by
ascending series with respect tor for each integerν.

In equation (16), the contour of integration can usually be closed with a semicircle,
and the integral can be evaluated by means of Cauchy’s residue theorem. Forν > −1,
and Rezt > 0, it follows thatKν(zt) > 0, and is a regular function ofzt throughout the
complex plane cut along the negative real axis, with a branch point at the origin. Therefore,
it is obvious that the integrand has a logarithmic branch point at the origin, and simple
poles exist att = m,m = 0,±1,±2, . . . . The logarithm ofZG(β, φ) in (16) describes
the quantum properties of free fermions in the mesoscopic ring over the entire temperature
range and for−∞ < µ < +∞. Once the function in (16) is evaluated, we can find various
expectation values of observable quantities, such as number density, total energy, persistent
current, etc, from the corresponding equations. In the following two sections we consider
the weakly degenerate and degenerate circumstances for the caculations.

3. The weakly degenerate case

3.1. General formulae

In this section we consider the weakly degenerate case, whereµ 6 m0. The integral in (16)
is evaluated for this case by closing the contour to the right with a semicircle of radius
R, because the integrand in the formula vanishes on the semicircle asR → ∞. Now the
contour encloses only the poles at the positive integersm = 1, 2, . . . . The negative simple
poles have no contributions to the integral. The integration is carried out over the contour
traversing in the clockwise direction. Hence, by Cauchy’s theorem the integral completely
around the contour is just that−2π i times the sum of the residues at simple poles. Actually
equation (16) reduces to

lnZG(β, φ) =
∞∑
m=1

(−1)m+1 1

m
exp(mβµ)ZB(mβ, φ) . (20)

Substituting this result into (9) one obtains the free energy of this system in the weakly
degenerate case. The persistent current at finite temperature thus yields directly from (12)

I (β, φ) = B0

∞∑
`=1

∞∑
m=1

∞∑
ν=0

(−1)m
`

m
Pν`(mz) exp(mβµ)Kν+1(mz) sin

(
2π`

φ

φ0

)
(21)

where

B0 = qξη

βh̄π
.

This is the relativistic persistent current formula in the weakly degenerate, and it can
be derived from another approach instead of the inverse Mellin transform. After taking
logarithms in (8), we have

lnZG(β, φ) =
∞∑

n=−∞
ln[1 + exp(−βE(kn)− α)] (22)
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where the summation runs over all single-fermion states. Employing the Possion summation
formula (18) and equations (9), (12) we obtain

I (β, φ) =
∞∑

`=−∞
I`(β, φ) (23)

where

I`(β, φ) = −η
∫ ∞

−∞

∂E(x)

∂φ
f (E) exp(i2π`x) dx (24)

and
∂E

∂φ
= qkh̄

LE
f (E) = [exp(βE + α)+ 1]−1 .

HereE is the single-fermion energy level. Substituting

k = 2π

L

(
x + φ

φ0

)
into (24), one finds

I (β, φ) = −2h̄qη

π

∞∑
`=1

sin

(
2π`

φ

φ0

) ∫ ∞

0

k

E(k)
f (k) sin(Lk`) dk (25)

or equivalently

I (β, φ) = −2qη

h̄π

∞∑
`=1

sin

(
2π`

φ

φ0

) ∫ ∞

m0

f (E) sin[L`(E2 −m2
0)

1/2/h̄] dE . (26)

For the weakly degenerate situation whereµ 6 m0, the Fermi distribution function can be
expanded to the series

f (E) =
∞∑
m=1

(−1)m+1 exp[−m(βE + α)] . (27)

Expanding the sine function in the integrand and substituting (27) into (25), we arrive at
the same formula (21). The current obtained here is available for the weakly degenerate
case where the fugacity expansions are used.

The persistent current (21) is an equilibrium property of the ring requiring that the
phase-coherence length be of orderL. The free energy refers to the thermal equilibrium
of the system at a fixed value of magnetic flux, however it retains its significance for the
magnetic flux varying slowly to permit at any instant the establishment of equilibrium. From
equation (21) we see that the current is an odd function of the magnetic flux, and it varies
periodically with the flux. In the ideal ring without impurity, the current is a function of
the number of fermions, chemical potential and temperature. It is highly sample sensitive,
decaying exponentially with decreasing temperature, and the magnitude fluctuates around
its non-relativistic value.

The number density is determined directly from equations (10) and (20) to give

n = 1

L

∞∑
m=1

(−1)m+1 exp(mβµ)ZB(mβ, φ) . (28)

The number density (28) is a positive function of the chemical potential, temperature, and
magnetic flux. It varies periodically with respect toφ as a cosine function with periodφ0,
and it decays rapidly with decreasing temperature, as well as increasing circumference. This
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gives the relativistic correction of the usual non-relativistic mesoscopic system. It fluctuates
violently with the interference of wavefunctions.

The total energy can be found by noting the derivative of the modified Bessel function
with respect toβ:

∂

∂β
Kν(bβ) = ν

β
Kν(bβ)− bKν+1(bβ) .

From equation (11) and the above derivative formula one has

E(β, φ) = ξη

π

∞∑
m=1

(−1)m+1 exp(mβµ)L̃(mz) (29)

where

L̃(mz) = L0(mz)+
∞∑
`=1

∞∑
ν=0

Pν`(mz)Lν(mz) cos

(
2π`

φ

φ0

)
and

Lν(mz) = m0Kν+2(mz)− 1

mβ
Kν+1(mz) .

The total energy is positive, which represents the expectation energy value of real fermions
above the Dirac sea. It contains all the quantum corrections to the Boltzmann limit, which
is the first term asm = 1.

The reliability of some function describing a physical quantity whose behaviour is
subject to prediction by means of a grand canonical ensemble is measured by the mean-
square deviation from the predicted value. In a mesoscopic system, the criterion for the
ensemble to make an accurate prediction of the measurable value is significant. The
physically measurable fluctuations provide measures of the uncertainty in the predictions.
The variance of the total energy in the equilibrium system gives

〈E2〉 − 〈E〉2 = T

β
CL (30)

whereCL is the heat capacity defined by (13), and for the free-fermion mesoscopic system
in the weakly degenerate case we have

CL = ξKBη

π

∞∑
m=1

(−1)m+1 exp(mβµ)M̃(mz) (31)

where

M̃(mz) = M0(mz)+
∞∑
`=1

∞∑
ν=0

Pν`(mz)Mν(mz) cos

(
2π`

φ

φ0

)
and

Mν(mz) = µβKν+1(mz)− z(3 + µmβ)Kν+2(mz)+mz2Kν+3(mz) .

Hence the statement about the behaviour ofCL in (31) is a measure of the actual physical
fluctuation of the energy in the system. One visualizes that due to the coherence of the
fermions, the energy fluctuation vibrating violently is a significant value which discribes the
uncertainty in the mesoscopic system.

The weakly degenerate case is valid when exp[−β(m0 − µ)] 6 1; for this situation
the particle density is higher or the temperature of the system somewhat lower than
that of the Boltzmann statistical case. As the temperature increases, or the particle
density decreases, the series of each of the above formulae converges very rapidly, due
to exp[−β(m0 −µ)] � 1. Thus, one regains the Boltzmann limit by retaining only the first
term in each series of the formulae.



5836 H-K Zhao

3.2. Non-relativistic limits

As z � 1, employing the asymptotic behaviour of the modified Bessel functionKν(r), we
can get the non-relativistic functions of the mesoscopic system directly from the explicit
formulae as given above.

From equation (21) we derive the non-relativistic persistent current by employing the
asymptotic behaviours of the modified Bessel function asm0 � KBT to give

I (β, φ) = I0

∞∑
`=1

∞∑
m=1

∞∑
ν=0

(−1)m
`

m3/2
Pν`(mz) exp(−mλ)

×
[

1 + 4(ν + 1)2 − 1

8mz
+ O(z−2)

]
sin

(
2π`

φ

φ0

)
(32)

where

I0 = qLη

βh̄3
3 =

(
2πh̄2β

m0

)1/2

λ = β(m0 − µ) > 0 .

Arranging the series and taking the summation over the subscriptν we have

I (β, φ) = 2I0

∞∑
`=1

∞∑
m=1

(−1)m
`

m3/2
exp(−mλ− ηm`)[1 +1m`] sin

(
2π`

φ

φ0

)
(33)

where

1m` = 1

8πz
(4η2

m` − 12ηm` + 3) ηm` = (ξ`)2

2mz
.

The first term in the square bracket of (33) represents the non-relativistic current of the
system, which is exactly the same equation as (A7) presented in [16] by considering the
electron system, in which the electron chargeq = e, and the spin numbers is not reckoned.
As the temperature is much greater than the characteristic temperatureT̃ = h̄2/m0KBL

2,
the current decays rapidly in the exponential form with its magnitude fluctuating around the
non-relativistic current as the temperatureT increases. In the description of characteristic
temperature,ηm` can be rewritten asηm` = `2T/2mT̃ . The correction1m` is a quadratic
polynomial of ηm`, and it is zero ata = (3 − √

6)/2, b = (3 + √
6)/2. 1m` is positive

for a > ηm` > b, and is negative fora < ηm` < b. For ηm` = 3
2, 1m` reaches the lowest

value of the correction curve to result in1m` = −3/(4mz). Therefore, by the relativistic
consideration the persistent current (33) is enhanced in the regiona > ηm` > b, while it
is weakened in the regiona < ηm` < b. The relativistic correction exhibits descreteness
as ladder to enhance and weaken the current. AsL → ∞, we see that equation (33)
approaches zero; this confirms the fact that for normal metal persistent currents can only be
observed in small closed system. AsT � T̃ , the expansion (33) decays very rapidly, and
the first harmonic term(m = 1) gives a good approximation to the current.

Defining the functionf (`)σ (λ) by the following equation:

f (`)σ (λ) =
∞∑
m=1

(−1)m
1

mσ
exp(−mλ− a`/m)

the persistent current (33) yields

I (β, φ) = 2I0

∞∑
`=1

`I`(λ) sin

(
2π`

φ

φ0

)
(34)
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where

I`(λ) = f
(`)

3/2(λ)+ 1

8z
[4a2

`f
(`)

9/2(λ)− 12a`f
(`)

7/2(λ)+ 3f (`)5/2(λ)] a` = `2T/2T̃ .

By this representation the persistent current is described completely by the function
f (`)σ (λ),and the usual non-relativistic situation merely relates tof

(`)

3/2(λ).
The non-relativistic number density then obtained from (28) is that

n = −n0

[
ñ0(λ)+ 2

∞∑
`=1

ñ`(λ) cos

(
2π`

φ

φ0

)]
(35)

where

ñ`(λ) = f
(`)

1/2(λ)+ 1

8z
[4a2

`f
(`)

7/2(λ)− 12a`f
(`)

5/2(λ)+ 3f (`)3/2(λ)]

and

n0 = 2η

h
(2πm0KBT )

1/2 .

The functionf (`)σ (λ) approaches zero when the circumferenceL approaches infinity for
` 6= 0. Thus, the number density of macroscopic system is realized by

n = −n0

[
f
(0)
1/2(λ)+ 3

8z
f
(0)
3/2(λ)

]
(36)

where the second term is the relativistc correction. The usual non-relativistic number density
of this mesoscopic system is determined byf (`)1/2(λ).

The non-relativistic total energy is found to be

E(β, φ) = −E0

[
Ẽ0(λ)+ 2

∞∑
`=1

Ẽ`(λ) cos

(
2π`

φ

φ0

)]
(37)

where

Ẽ`(λ) = f
(`)

1/2(λ)+ 1

8z
[4a2

`f
(`)

7/2(λ)− 20a`f
(`)

5/2(λ)+ 7f (`)3/2(λ)] E0 = ξm0η

(2πz)1/2
.

The total energy density of the macroscopic system is

E(β)/L = − m2
0η

h̄(2πz)1/2

[
f
(0)
1/2(λ)+ 7

8z
f
(0)
3/2(λ)

]
(38)

in which the second term is the relativistic correction to the lowest order of 1/z. The
usual non-relativistic energy density is associated to the functionf

(`)

1/2(λ), and the energy
fluctuation defined by (30) is now measured by the non-relativistic heat capacity

CL = C0

[
C̃0(λ)+ 2

∞∑
`=1

C̃`(λ) cos

(
2π`

φ

φ0

)]
(39)

where

C̃`(λ) = z3/2(µ−m0)f
(`)

−1/2(λ)+ 1
8z

1/2g1`(λ)+ 1
128z

−1/2g2`(λ)+ O(z−3/2)

and

g1`(λ) = 4a2
` (µ−m0)f

`
5/2(λ)− 4a`(5µ− 7m0)f

(`)

3/2(λ)+ (7µ− 11m0)f
(`)

1/2(λ)

g2`(λ) = 16a4
` (µ−m0)f

(`)

9/2(λ)− 4a3
` (56µ− 57m0)f

(`)

7/2(λ)+ 2a2
` (388µ− 659m0)f

(`)

5/2(λ)

−2a`(324µ− 779m0)f
(`)

3/2(λ)+ (57µ− 225m0)f
(`)

1/2(λ) .
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By noting that for the weakly degenerate caseµ 6 m0 and the first term in (39) plays
a leading role in the function, one realizes the intrinsically positive character of the heat
capacityCL > 0. In the mesoscopic system the heat capacity is sensitively related toL,
and the macroscopic heat capacity is smeard not only by the finite circumference but by
the relativistic effect. The positive heat capacity is one of the thermodynamic stability
conditions. The heat capacity of a macroscopic ring is given by taking the limitL → ∞
in (39):

CL = C0
[
z3/2(µ−m0)f

(0)
−1/2(λ)+ 1

8z
1/2(7µ− 11m0)f

(0)
1/2(λ)

+ 1
128z

−1/2(57µ− 225m0)f
(0)
1/2(λ)

]
.

Therefore, in the weakly degenerate mesoscopic relativistic system, the physical
quantities are sensitively associated with the dimension of the system and the temperature.
The relativistic effect gives small corrections to these quantities by adding some exponential-
decay-like terms. The fermions confined in a one-dimensional ring with circumferenceL

comparable with phase-coherence length exhibit strong interferences. Relativistic statistical
thermodynamic functions have complicated structures relating to the modified Bessel
functions of the second kind, and they include all the relativistic corrections as well as
the quantum properties.

4. The degenerate case

At very low temperature and high densities, the behaviour of the Fermi system is completely
dominated by quantum statistical effects. Because the considerable overlap of wavefunctions
is very large, the range of the chemical potential is positive, in fact hereµ > m0. For this
degenerate Fermi system, the fugacity expansions used in the weakly degenerate case cannot
be employed as they stand. In order to calculate the grand partition function expressed
generally in (16), we close the contour in the integral to the left with a semicircle of radius
R in the anticlockwise direction, and then we deform the contour so as to avoid the branch
cut along the negative real axis. There are no singularities within the contour, and the
integrand vanishes on large radial circular arcs asR → ∞. Thus the integral around the
contour vanishes as a consequence of Chauchy’s theorem. Letγ denote the portion of the
contour from−R on thex axis in the uper plane to−r, and a small circle of radiusr
around the origin in the clockwise direction, then the integral path runs from−r to −R on
the x axis in the lower plane. Thus, equation (16) reduces to

lnZG(β, φ) = − 1

2i

∫
γ

1

t sin(πt)
exp(βµt)ZB(βt, φ) dt (40)

where the functionZB(βt, φ) is given by (19). The evaluation of (40) gives the logarithm
of partition function. Note that in the caculation we should take the limit asR → ∞, and
r → 0. The poles at negative integers on the cut will contribute only terms of exponential
orders. Introducing the parameterx = p0/m0, and the notationτ = (x2+1)1/2, wherep0 is
the positive solution ofµ = [p2

0 +m2
0]1/2 we haveµ = τm0. The variable t is now changed

to t = u/τz. We expect to carry out the calculations with expansion in(1/τz). Dividing
the integration into two parts, one is along thex-axis, the other is around the small circle,
and then utilizing the relation among the modified Bessel functions

Kn[z exp(±iπ)] = exp(−inπ)Kn(z)∓ iπIn(z) (41)
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we reduce equation (40) to

lnZG(β, φ) = ξη

[
Jγ0(β)+ 2

∞∑
`=1

∞∑
ν=0

P̃ν`Jγ ν(β) cos

(
2π`

φ

φ0

)]
(42)

where

P̃ν` = (−1)ν
1

ν!

(
ξ`

2

)2ν

Jγ ν = lim
r→0

(J1ν + J2ν)

(43)

and

J1ν = (−1)ν
∫ ∞

r

exp(−y)
sin(πy/τz)

Iν+1(y/τ)
dy

yν+1

J2ν = 1

2π

∫ π

−π

exp[u(θ)]

sin[πu(θ)/τz]
Kν+1

[
u(θ)

τ

]
u−ν(θ) dθ .

By u(θ) we mean thatu(θ) = r exp(iθ). Here Iν(z) is the modified Bessel function of
the first kind, and whenν is a positive integer, it has the power expansion ofz. The
function is also defined forν to be complex. In particular,Iν(z) is real and positive when
ν > −1, z > 0, and is an entire function ofz when ν is one of the positive or negative
integers. In equation (42), although integralJ1ν converges at the uper infinite limit, there
exists a logarithmic divergence at the lower limit asr → 0, which diverges at the origin as

(−1)ν+1 1

(ν + 1)!

τz

π

(
1

2τ

)ν+1

ln r . (44)

The integralJ2ν also contains a logarithmic divergence at the same point with exactly the
same form as that of (44) but an opposite sign. However, this singularity can be isolated
by expanding the sine function in this integral. As a result, we realize that the logarithmic
divergences precisely are cancelled from each other in (42). Therefore, the logarithm of
partition function is convergent at the origin. Integrate once by parts in the integralJ1ν ,
and note that the recurrence relations forIν(z) allow us to get the differential relation

d

dy

[
e−yIν+1(y/τ)

1

yν+1

]
= e−y

[
1

τ
Iν+2(y/τ)− Iν+1(y/τ)

]
1

yν+1
(45)

then use the expansion formulae of modified Bessel functionsKν(z) and Iν(z) to
integrate (43) term by term, one arrives at

Jγν(β) = (−1)ν
[
z

2π
J (1)ν (τ )+ π

24zτ 2
J (2)ν (τ )+ 7

1440τ
(
π

τz
)3J (3)ν (τ )

]
(46)

where

J (1)ν (τ ) = 1

(ν + 1)!

[
ln

(
1

2τ

)
+ ψ(1)

]
+ 1

2

ν∑
k=0

(−1)k
k!

(ν − k)![2(k + 1)]!
(2τ)2(k+1)

+
∞∑
k=0

(2k + 1)!

(k + ν + 2)!(k + 1)!

(
1

2τ

)2(k+1)

J (2)ν (τ ) =
ν∑
k=0

(−1)k
k!

(ν − k)!(2k)!

(
1

2τ

)−2(k+1)

+ 2
∞∑
k=0

(2k + 1)!

k!(k + ν + 1)!

(
1

2τ

)2k

J (3)ν (τ ) =
ν−1∑
k=0

(−1)k+1 (k + 1)!

(2k)!(ν − k − 1)!
(2τ)2(k+2) + 2

∞∑
k=0

(2k + 3)!

k!(k + ν + 1)!

(
1

2τ

)2k
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and ψ(1) = −0.577 216. . . , the negative Euler–Mascheroni constant. Therefore, the
logarithm of partition function for the degenerate relativistic quantum ideal fermion system
is given as the infinite series by substituting equation (46) into (42). Our result of the
degenerate system is related to the hypergeometric series with one and two variables [39]:

F(α1, α2; γ ; x) =
∞∑
n=0

(α1)n(α2)n

n!(γ )n
xn

82(α1, α2; γ ; x, y) =
∞∑
k=0

∞∑
ν=0

(α1)k(α2)k

k!ν!(γ )k+ν
xkyν

and

21(α1, α2; γ ; x, y) =
∞∑
m=0

∞∑
k=0

(α1)m

k!m!(α2)m(γ )k+m
xmyk

wherex, y are variables, and(α)n are defined by

(α)n = 0(α + n)/0(α)

i.e.

(α)0 = 1, (α)n = α(α + 1) . . . (α + n− 1) n = 1, 2, . . . .

Thus, we obatin the logarithm of partition function as

lnZG(β, φ) = ξη

[
J0(β)+

∞∑
`=1

J̃`(β) cos

(
2π`

φ

φ0

)]
(47)

where

J0(β) = z

2π

[
ln

(
1

2τ

)
+ ψ(1)+ τ 2 + 1

8

∫ 1/τ 2

0
F(1, 3/2; 3; x) dx

]

+ π

12z

[
1

τ 2
F(1, 3/2; 2; 1/τ 2)+ 2

]
+ 7

120τ

( π
τz

)3
F(2, 5/2; 2; 1/τ 2)

and

J̃`(β) = z

π
J
(1)
` (τ )+ π

12zτ 2
J
(2)
` (τ )+ 7

720τ

( π
τz

)3
J
(3)
` (τ )

with

J
(1)
` (τ ) = 2

ξ`

[
ln

(
1

2τ

)
+ ψ(1)

]
I1(ξ`)−

(
2

ξ`

)2 ∫ x`

0
21(1, 3/2; 1; x, y`) dx

+ 1

23

∫ 1/τ 2

0
82(3/2, 1; x, y`) dx

J
(2)
` (τ ) = (2τ)221(1, 1/2; 1; x`, y`)+ 282(3/2, 1; 2; 1/τ 2, y`)

J
(3)
` (τ ) = 1282(5/2, 2; 2; 1/τ 2, y`)− τ 4(2ξ`)221(2, 1/2; 2; x`, y`)

x` = −
(
ξ`τ

2

)2

y` =
(
ξ`

2

)2

.
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Equation (47) converges under the conditionµ > m0, by which we can derive the
thermodynamic functions directly. The persistent current now expressed by the formula

I (β, φ) = −Ĩ0

∞∑
`=0

`J̃`(β) sin

(
2π`

φ

φ0

)
(48)

where

Ĩ0 = ξηq

βh̄

and J̃`(β) is given by (47). The current decays with temperature in power form, but is a
constant at zero temperature. From equations (10) and (47), one immediately obtains the
particle number density

n = n′
0

[
ñ0 +

∞∑
`=0

ñ` cos

(
2π`

φ

φ0

)]
(49)

where

ñ0 = z

π

[
(2τ)2 − 1 − 1

8

∫ 1/τ 2

0
F(1, 3/2; 3; x) dx

]
− π

3zτ 2
F(3/2, 1; 1; 1/τ 2)

ñ` = z

π

[
− 2

ξ`
I1(ξ`)+ 1

2
(2τ)221(1, 3/2; 1; x`, y`)− 1

8

∫ 1/τ 2

0
82(1, 3/2; 3; x, y`) dx

]

+ π

3zτ

[
2τ21(1, 1/2; 1; x`, y`)− 1

τ
82(2, 3/2; 2; 1/τ 2, y`)

]
and

n′
0 = m0η

2zτh̄
.

The number density is not independent of dimension, as the case in a macroscopic
system, but depends on the circumference. The total energy is thus found by substituting
equations (47), (49) into (11):

E(β, φ) = ξm0η

[
Ẽ0(β)+ 2

∞∑
`=0

Ẽ`(β) cos

(
2π`

φ

φ0

)]
(50)

where

Ẽ0(β) = 1

2π

[
−d + (τ/2)2

∫ 1/τ 2

0
F(3/2, 1; 3; x) dx

]

+ π

6z2

[
1 − 1

2τ 2

(
2x1

∂

∂x1
+ 1

)
F(3/2, 1; 2; x1)

]

Ẽ`(β) = 1

2π

[
−2d

ξ`
I1(ξ`)+ 2τ 2

x`

∫ x`

0
21(1, 1/2; 1; x, y`) dx

−1

4

∫ 1/τ 2

0
82(3/2, 1; 3; x, y`) dx

]

+ π

6z2

[(
2x`

∂

∂x`
+ 1

)
21(1, 1/2; 1; x`, y`)
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− 1

2τ 2

(
2x1

∂

∂x1
+ 1

)
82(3/2, 1; 2; x1, y`)

]
and

d = 1 + ψ(1)+ ln

(
1

2τ

)
x1 = 1/τ 2 .

The energy fluctuation defined by equation (30) is now measured in this degenerate case
by the heat capacity for constantL, which can be drawn from (13). One sees that the heat
capacity is positive, and it vanishes as the temperature approaches zero. The fluctuation of
energy sensitively depends on th circumference of the ring. From equations (14) and (47)
one can obtain the pressure of the Fermi gas, and one finds that the pressure is not zero
even at the absolute zero of temperature. The Fermi gas must be confined owing to the
pressure in the ground state, which is a manifestation of Pauli’s principle.

The non-relativistic thermodynamic functions can be computed by letting the quantity
x in τ = (1 + x2)1/2 to be small enough, i.e.x � 1, in the corresponding formulae for the
degenerate situation. In our calculations we have included the rest energy in the Hamiltonian
of the ideal free-fermion system, not merely presenting the kinetic energy. So that in the
non-relativistic correspondents the contributions of the rest energy to the functions are also
included. Asµ � KBT , the expansions of degenerate thermodynamic functions with the
power form 1/(zτ) converge rapidly, and they give good approximations.

5. Discussion

We have examined the relativistic quantum behaviours of ideal many-fermion system
confined in a small one-dimensional ring with circumferenceL threaded by an external
magnetic flux. We study the system starting from inverse Mellin transform to obtain
the logarithms of partition functions both in the weakly degenerate and degenerate cases,
from which we havefound persistent currents, number densities, total energies and heat
capacity. These results contain relativistic and quantum corrections of Boltzmann statistical
system. These quantities are periodic functions of magnetic fluxφ with periodφ0, and they
are sensitive to the circumferenceL. The mesoscopic system presents discrete energies
evidently arising from the finite special confinement of the sample. The particles interfere
strongly asL is of the order of phase coherence length, and fluctuations of observables are
of significance. Each of the measured quantities is related to the modified Bessel functions
of the second kind, which is a special property of relativistic quantum statistical many-body
system. However, in the mesoscopic ring, they are concerned withKν(z), ν = 0, 1, . . .,
which is much complicated than that of a macroscopic system where they are only related
to K1(z). For ad-dimensional macroscopic system, the logarithm of its partition function
are functions ofK(d+1)/2(z), d = 1, 2, 3. Therefore, the relativistic systems contain much
more subtle information than that of non-relativistic systems, and we also have very many
mathematical applications in them.

For the weakly degenerate case, whereµ 6 m0, we obtain the persistent current (21),
number density (28), total energy (29), and energy fluctuation measured by the heat capacity
(31). These quanties decay rapidily whenµ � m0, and the leading terms in each of
these expansions retain the corresponding Boltzmann statistical results. The non-relativistic
relevant behaviours are derived by lettingm0 � KBT (for C = 1), and we found these
quantities are fluctuating around the usual non-relativistic terms. This fact represents that the
relativistic consideration of the system gives pictures of enhancement and reduction of the
corresponding physical measured values. Specifically, if we take the system of fermions to
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be electron system, we can have the relativistic picture of electron transport with relativistic
corrections. For the weakly degenerate electron situation, where the fugacity expansion is
valid, this corresponds to the case of electrons transporting in insulation materials. The
persistent current circulating around the ring increases evidently with temperature, because
the filled fermions gain enough kinetic energies to participate the conduction. The current
oscillates periodically withφ as a sine function, and the non-relativistic persistent electric
current limit is coincident with that obtained in [16]. In order to keep the equilibrium state,
the variation of the magnetic flux must be sufficiently slow. The number density, total
energy, heat capacity are vibratory functions of cosine with periodφ0. The energy fluctuation
measured by the heat capacity gives the stability condition of the equilibrium state. All
these thermodynamic quantities decline in magnitude exponentially with temperaure and
the circumference. They exhibit explicitly relativistic corrections in the magnitudes.

For the degenerate case, whereµ > m0, we have evaluated the relevant observables. The
main results are equations (47), (48), (49) and (50). These thermodynamic observables are
characterized by temperature, chemical potential, circumference and magnetic flux. They are
related to the generalized hypergeometric functions with two variables. Therefore we find
an application of these specific functions in our mesoscopic system. Asµ > m0 � KBT ,
these expansions converge quickly with temperature declining in the power form. However,
they are not zero even at the absolute zero temperature, but oscillate periodically with
φ, and they are much sophisticated than the weakly degenerate circumference. All the
discontinuities of these functions at absolute zero temperature are smeared to round in
small temperature. The declines in magnitudes of these observables are not faster than
those of the weakly degenerate case. Non-relativistic limits can also be reduced from
obtained results by considering the velocities of fermions to be very small compared with
that of light. Defining the Fermi energy by the kinetic energy formula, one immediately
finds corresponding formulae for the zero temperature. One can draw from above results
that the pressure is not zero even at zero temperature, which is the natural behaviour of
Pauli’s principle.

As the velocities of particles are large enough, it is necessary to deal with the
problems by means of special relativistic theory. This can provide us some usefull subtle
information on the particle systems, and it can also exhibits some mathematical structures
for investigation. However, employing relativistic quantum statistical mechanics to dispose
of many-body problems including particle–particle interactions is a very complicated thing,
in which one has to tackle the difficult task of creation and destruction. Therefore, although
the free-fermion model is unrealistic, it can give us some main configuration on the physical
system.
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